
TALLINN UNIVERSITY OF TECHNOLOGY
Department of Computer Science

Network Software and Intelligent Systems

Distributed and Replicated File System
for Large Scale Data Storage

Graduation paper

Student: Sven Petai
Student Code: 001740LDWL
Supervisor: prof. Tanel Tammet

Tallinn
2007

Author declaration

I declare that this thesis is based on my own work and has not been submitted

for any degree or examination by anyone else.

Date: Signature:

2

Annotatsioon

Tänapäevaste multimeediarohkete veebirakenduste tarvis on vajalik suurte

andmemahtude hoidmine viisil, mis oleks kiire, odav, veatolerantne ja omaks ka

suurt skaleeruvuse potentsiaali. Sarnane vajadus tekkis ka Elionil peamiselt

erinevate hot.ee portaali teenuste sisu hoidmiseks. Rakenduste seisukohalt oleks

parim, kui selline andmesalvestuse meetod paistaks tavalise lokaalse

failisüsteemina, kuna sellisel juhul ei peaks rakendusi ringi tegema. Seetõttu

otsustatigi antud lahendus luua hajusfailisüsteemina, mis kujutab endast

paljudest serveritest koosnevad klastrit, kus klient näeb igaühes neist kõiki

klastris eksisteerivaid faile justkui lokaalseid ja võib neid ka sellisena avada,

lugeda ja muuta. Failisüsteem kannab ise sisemiselt hoolt selle eest, et fail saaks

klientprogrammi jaoks õigest serverist kohale toimetatud, kui teda lokaalses

masinas ei eksisteeri. Ühtlasi kannab klaster sisemiselt ka hoolt, et iga fail

eksisteeriks alati rohkemas kui ühes masinas, mis vähendab andmete kaotamise

riski mõne serveri katkimineku korral.

Käesoleva diplomitöö põhitulemus on Elioni hajusa failisüsteemi disaini ja

teostuse loomine. Töös kirjeldatakse täpseid Elioni poolseid ootusi sellisele

failisüsteemile ja neist tulenevaid disaini otsuseid, samuti analüüsitakse

erinevaid olemasolevaid hajusaid failisüsteeme, mille mitmesuguseid jooni

kasutatakse ära ka loodava failisüsteemi disainis.

3

Table of Contents
1 Introduction ...6
2 Goals ..7
3 Distributed File Systems ...9

3.1 What is a file system?..9

3.2 What is a distributed file system?...12

3.3 Case studies ..14

3.3.1 Kernel based implementations...15
3.3.2 NFS...15
3.3.3 Coda..17
3.3.4 Userland approach..18
3.3.5 MogileFS...19
3.3.6 GoogleFS...19
3.3.7 Hybrid implementation...20
3.3.8 TDFS...22

4 Design Requirements ..23
5 Design Decisions ...25
6 Implementation ...28

6.1 Metadata layout...30

6.1.1 RPFS_CLASS...30
6.1.2 RPFS_POP...31
6.1.3 RPFS_TRANSPORTS...31
6.1.4 RPFS_SERVER..32
6.1.5 RPFS_TRANSPORT_TO_SERVER...32
6.1.6 RPFS_FILE..33
6.1.7 RPFS_FILE_TO_SERVER..33
6.1.8 RPFS_INODE..34
6.1.9 RPFS_ACL...34
6.1.10 RPFS_MSGBUS...35

6.2 File system...35

6.2.1 Flat..35
6.2.2 Hier...36
6.2.3 Caches and cache coherency..39
6.2.4 Locking..40
6.2.5 Object removal..41

6.3 Replication Daemon...41

6.3.1 Structure...43
6.3.2 RPCOM protocol...44

6.4 Garbage Collector..45

6.5 Performance measuring daemon...45

6.6 Weighter..46

4

6.7 Integrity Checker...46

6.8 Filesystem tester...46

7 Technical Architecture ..48
7.1 Hardware...48

7.2 Software..48

7.3 Structure..49

8 Summary ...51
9 References ...52
10 Resümee ..53

5

1 Introduction

This thesis describes the design and implementation of a distributed file system,

created for Elion Enterprises Ltd. The file system is intended to be used as a

platform for storage intensive web services. At the moment of writing the

implementation is finished and has entered an early testing phase.

For most modern web services like galleries, blogs, video sharing and community

portals a lot of scalable, reliable and fast storage is needed. In general there are

two obvious ways to approach this problem - using expensive proprietary storage

solutions or building your own services so that they would know how to handle

storage distributed over a large number of servers.

The first solution is not really desirable because of the closed architecture of

these proprietary storage solutions which usually translates to vendor lock-in

and high costs. The second solution would be completely under our control and

cheap, but we would have to reinvent the storage management logic in every

application.

What we were after was a middle ground between the two - a file system that

looks to services like a normal local file system, but in reality is distributed over

many backend servers.

To achieve this we have decided to design our own distributed cluster file system

called RPFS. In the following sections we will first discuss what exactly is a

distributed cluster file system and explore previous work done in this area. After

gaining sufficient background perspective we will turn to explaining the design

and implementation of our RPFS.

6

2 Goals

The file system that we have designed was going to be used mainly for serving

user content to the internet - pictures from the galleries, movies, homepages,

private files etc. We wanted to be able to integrate it into our current hot.ee

portal and possibly use it for other services in the future. It was also clear from

the beginning that we have to provide at least FTP access to all the content in

addition to the portal.

We formulated the following goals for the project:

● Scalability: The architecture must be able to scale well both space and

network speed wise to loads that would allow servicing millions of users

and provide at least several hundred terabytes of space.

● Fault tolerance: The system must survive the loss of at least a single node

without data loss.

● Transparency: We want to have as little special storage management code

in our applications as possible, preferably none at all.

● Low price: Our solution has to be a lot cheaper than the current

proprietary storage solutions in use, to make services that we plan to run

on top of it economically feasible.

● Network usage optimization: The architecture should be able to take

advantage of the fact that we have servers in several cities over Estonia.

● Manageability: The storage system should not need any daily manual

administration so that replication decisions, load balancing, fault detection

and error recovery should be as automatic as possible.

● Security: Since our portals have complicated privilege management

schemes it is essential to have support for access control lists (ACL).

In addition to the hard goals that have to be satisfied the following soft goals

were defined too:

7

● Currently managing the content and its access privileges is done from the

existing portal software and it would be desired to retain the possibility of

managing and reading file and directory privileges through SQL.

● The content is going to be served over HTTP and FTP protocols, in the

future additional methods might be added. So if at all possible the file

system should not make any assumptions about what applications it has to

serve.

● There is a very strong possibility that many users will upload the same

video or music files. So it would be useful to store only one physical copy of

the file and allow multiple virtual copies to reference it.

To give a preliminary understanding of our vision we present the layout

(Illustration 1) of the final solution that will be more closely described in section

7.3.

8

Illustration 1: the overall view of the distributed file system deployment in
different cities. The hot cluster is used to manage file privileges and sharing
directly in the metadata server. Web pages served by the HOT cluster reference
content that is stored in the file system servers located in different cities all over
Estonia.

3 Distributed File Systems

This chapter discusses the basic concepts crucial to understanding what file

systems in general and distributed file systems in specific are, and what are the

main problems for implementation. In this thesis we will concentrate on Unix

architecture: unless said otherwise, our descriptions are applicable to operating

systems that have Unix roots like FreeBSD, Linux and Solaris.

3.1 What is a file system?

Most programs that we use produce some data that has to be stored on a

nonvolatile media (meaning that it will retain data when not powered). This

requirement arises partly from the fact that the main memory in our normal

computers is volatile and much smaller than the nonvolatile storage media. In

order to make such a scheme usable, programs have to write data not currently

in use to slower nonvolatile medium for long term storage. Deeply embedded

systems with serious resource constraints running only a single application

usually implement reading and writing operations directly in the application

code. In larger systems it is obviously a good idea to do these operations in a

central layer that can be used by various applications only through the

programming interface (API). This avoids code duplication, allows us to enforce

file access privilege checking, makes it possible to build tools to centrally

manage this datastore (set access privileges, quotas etc.) and makes it possible

to serialize data changes to provide determinism.

This central layer is called a file system (FS) and is usually a part of the

operating system (OS) kernel. File systems operate in logical units called files

which is a named collection of related information stored on a secondary storage

[1].

Operating systems usually consist of two parts. User space or userland is the

part where applications execute in their own address space, protected from

each other. The central part of the operating system is the kernel which is

9

usually implemented as a single monolithic program running with the highest

possible privileges. It is the task of the kernel to check access privileges and

provide convenient resource abstractions to the userland. Programs running in

userland request services from the kernel mainly by issuing system calls

(syscalls) which are basically just functions that the kernel has exported. Usually

programs will not issue system calls directly, but will rather call functions from

the system library (called libc in Unix systems) that in turn may issue system

calls to fulfill their function. File system related syscalls are handled inside the

kernel by the abstraction layer called Virtual Filesystem Interface (VFS) which

can map requests to an actual file system component [2]. The real file system

component might be local (ext3, reiser, UFS2) or remote (NFS, Coda).

Usually when an application sends a file to the network it does so by reading a

chunk of it from the file system and then writing the read data to the socket. This

means that the kernel has to first copy the data to userland and then right back

to send it out. This constant data copying can introduce significant overhead so

several operating systems have introduced a special syscall called sendfile()

which sends whole files out directly from inside the kernel.

In most file systems files are just byte streams that do not have any structure

from the perspective of the file system and the interpretation of the contents is

solely up to the program reading it. There are also file systems that assign an

internal structure to the file objects – for example in NTFS a file is a structured

object consisting of typed attributes which can all be accessed independently [3].

The actual file contents are just stored in a unnamed data attribute without

imposing structure on its contents. Still other file systems have gone even

further and support record orientated files that provide an interface resembling

the functionality of RDBMS [4].

In general the primary task of the file system is to abstract away the physical

location of the file from the caller so that users do not have to have any idea how

the data is stored physically on the media or even where - it might be stored on a

local disk or just as well on a machine located at the other side of the world.

10

Internally most file systems keep information about the actual file contents and

associated information separately. File contents are stored just as the application

sent it, without paying any attention to its content or adding anything to it.

Usually file content is stored in equal sized blocks that are referenced from the

file's metadata object. Metadata is the part that stores filenames, access

privileges, special flags, various timestamps, location in the directory tree, the

actual physical location of blocks on disk and possibly various metainfo like

extended attributes and the file type if supported [1].

Besides files there can be many other object types in the file system. The other

most common object type is a directory, which allows you to store files or other

directories making it possible to create tree like hierachies. File systems that

support directories are called hierarchical file systems and the ones that store all

the files at the same level are called flat file systems. Another common file

system object is a hard link that is used to reference the same file from multiple

directories.

Traditionally an in-kernel metadata object that describes a single file system

object is called “inode” which is short for index node.

The usual I/O flow in a traditional Unix system has the following steps

(Illustration 2):

● A userland application calls one of the file system operation functions in

the standard system library (libc).

● Libc issues a syscall

● File system syscalls are handled in the kernel by the VFS layer.

● The VFS layer calls the corresponding function of the backing file system.

● The backing file system performs the required operation, which might be

reading data from the local disk or fetching some blocks over the network

if the file system is not local.

● The results are copied back to original caller by taking previous steps in

11

reverse.

3.2 What is a distributed file system?

For many purposes it is often a good idea to have files stored on one computer

accessible by others. An example of such a system is a university network where

you might easily have thousands of computers where each person might log in,

and you want them still to see the same files on each computer. Besides being

convenient to use it is also far more easier and efficient to back up this central

file server than it would be to back up thousands of clients.

In early systems files were just transfered between systems with special tools

like an FTP client. It was obvious though that a file system that would look to

applications as a normal local file system and could do the necessary data

transfers with the server transparently would be a far better solution, since it

would allow us to use almost all our usual applications on top of it without

having to make any changes to their source code.

Many different ideas were proposed and implemented on different levels of the

system and with different semantics. Some of the implementations were on the

12

Illustration 2: Normal I/O flow in Unix systems.

block layer which had good performance but lousy semantics because of the

coherency problems introduced by the block caching. The other extreme was

implementation right at the top of the kernel near the system call dispatch layer

from where the necessary FS calls were just proxied to remote machines. This

had great semantics and was easy to understand but suffered from awful

performance [5]. Finally it was agreed that the best of both worlds can be

achieved somewhere in the middle, where the kernel still has knowledge of the

files but can also use normal buffer caches (at the vnode layer). This balancing

between performance and semantics is the common problem in the design of all

the distributed file systems (DFS). In general when you want better performance

you have to relax the semantics.

Most of the current widely used DFS implementations have a simple client-server

architecture where many clients are served by a single server (NFS, CIFS). For

scalability and availability reasons it is a good idea to have multiple servers and

the possibility of having a single file replicated on more than a single server. This

multiple master architecture is very hard to implement because of the

distributed locking and cache coherency issues that might arise. Currently AFS

and Coda are the most popular of such file systems but neither is in wide use.

Both of them relax the the Unix file semantics quite a bit which makes them

unsuitable for the applications that really expect those, like DBMS software.

To achieve reasonable performance a network file systems use caches. In

general you might cache both reads and writes. Caching the reads is somewhat

easier: the main danger will be that the file has been changed on the server and

your cached copy is out of date. A simple solution used by NFS is to keep the

caching timeframe short so the probability of serving false data is low. Another

option is to introduce the concept of cache leases/callbacks which means that the

server will keep track of which client has which file and sends them invalidation

notices when the master copy changes. Such a scheme is used by most of the

network file systems (AFS, Coda, SMB, Sprite) [6].

One of the most important aspects of any distributed file system is the naming.

13

Ideally you do not want filenames to reveal a hint about the files physical

location which is called location transparency. Somewhat more advanced

property is called location independence which means that file name does not

need to be changed when the files physical location changes [1]. Logical next

step from having location independence is to have multiple copies of the same

file called replicas on different servers for better performance, availability and

fault tolerance. Since having same files on multiple servers creates additional

cache coherency issues there are only few distributed file systems that have

implemented replication.

Some systems like NFS allow you to mount remote directories into any place in

the clients local directory tree. While this solution is extremely flexible it might

also be very hard to administer since every client can have different resulting file

system structure. Alternative to this approach is to force single global name

structure that will look the same from all the client machines in the cluster. The

latter approach is the one used in AFS based file systems.

3.3 Case studies

In order to get a better understanding of where the main implementation

difficulties lie and what the most common solutions are, we will now analyze

some of the specific distributed file systems. We have decided to group them on

the basis of whether they are implemented in kernel, userspace or are hybrid

between the two. There are of course various other important aspects that could

have been used for grouping like single master vs. server-less systems, caching,

failure tolerance and so on but we have found that whether a file system is

implemented in kernel or userland determines most of the other design aspects.

We define kernel based file systems as those that have any component of the file

system itself in the kernel and userland file systems as those that do not have

any special help from the kernel. We call file system a hybrid one when it uses

some kind of kernel proxy layer (portalfs, FUSE, LUFS) that is not specific to the

file system implementation.

14

It is important to notice that by this definition the FS implementations that have

some parts in the userland and some in the kernel (i.e Coda) fall into the kernel

based class rather than the hybrid one.

Up until lately all distributed file systems were implemented in kernel space

because the speed penalty of having to copy data continuously back and forth

between userland and kernel used to be unacceptable. Only in recent years has

the CPU speed of cheap commodity hardware reached levels where the

performance improvements offered by the pure kernel space implementations

have become marginal and bottlenecks have moved to bandwidth and network

latencies [7].

3.3.1 Kernel based implementations

The main problem with implementing anything in the kernel is that you cannot

use familiar libraries, mistakes will usually crash the whole OS instead of only

your program, debugging is hard and you have to be aware of lots of limitations

like a small stack size. All this means that usually implementing a stable file

system in kernel space requires several years of development time and if you

have to do network communication and synchronization with other nodes the

task will become a lot harder. This is probably one of the main reasons why there

have been so few kernel space distributed cluster file system implementations so

far.

3.3.2 NFS

Sun Microsystems Network File System (NFS) is one of the earliest non-

experimental distributed file systems and probably the most used one currently.

It is also widely used in current Elion infrastructure hence we will discuss its

architecture. In this text we are discussing NFS version 3 even though the

version 4 that brings important caching improvements was approved recently too

it is not yet widely implemented or used.

NFS has a pure client-server architecture and is stateless which allows it to be

15

more robust in the face of network failures. It does not have its own on-disk

structure and can be rather thought of as a stacked file system that you can use

to share any of your real local file systems with others. Basic idea of the

architecture is that NFS client component marshalls incoming file system calls

into remote procedure call (RPC) messages which are then executed on the

server (Illustration 3).

There is a very little support for caching – basically you can cache data for

reading on the client side but have to verify modification timestamps each time

before using cached entry. Some implementations have decided to relax this

requirement and will not verify cache entries that are accessed many times in

rapid succession. While being good for performance it introduces a small window

of possible cache incoherence. All the communication with the server is done

with remote procedure calls (RPC) each of which carries all the necessary

information for doing a single I/O request [5]. Since there is no state or much of

a caching support the server never has to contact its clients, which is a huge

16

Illustration 3: I/O flow in NFS

design simplification. Having no state avoids all the complexities of data

synchronization, but on the other hand it also means the nodes have to be

connected by fast network to achieve reasonable performance and locking

support has to be implemented by other means.

In the light of our declared goals the main problems with such an approach are:

● Availability: when the connection to the server fails or the server crashes

you cannot access your files anymore.

● Scalability: while the single server approach works fine for a small number

of clients it will quickly become a bottleneck in any larger installation like a

university network with thousands of nodes.

● Fault tolerance: since the files are physically located on a single server

they can easily be destroyed when something happens to it (fire,

earthquake, electrical surge etc).

3.3.3 Coda

Coda is a distributed file system that has been in development at the Carnegie

Mellon University (CMU) since 1987. It started out as an advancement of AFS,

which was developed at the CMU too. AFS in turn was heavily inspired by the

design of NFS and is still in active development by the OpenAFS and Arla

projects. There also exists a file system called InterMezzo which started out as

an improvement of the Coda so the lineage has become quite complicated.

The original purpose of the AFS and latter the Coda project was to create a

university wide general purpose distributed file system for CMU. Obviously that

meant it had to scale to serve thousands of client nodes without saturating the

network. The cluster had to have many servers since no single server could

handle such a large number of clients and supporting server replication was

essential to fulfilling the high availability requirements that this kind of

environment has. They also implemented far better security models than NFS by

adding support for Kerberos authentication, access lists and encryption. Coda

17

also supports disconnected operation which means that a client that gets

disconnected because of network failures or on purpose (i.e mobile clients) can

still do operations on locally cached files. Changes are later merged back to the

cluster when the client joins it again. There might of course be conflicts when a

disconnected client has modified a file that was modified by others too. In these

cases the conflict resolving process might require human intervention.

Coda achieves high performance by ensuring that most operations will only

touch the local file system. Since various studies have shown that a great

majority of the file system operations are reads they decided just to fetch the

whole file into local client's cache when the open syscall is issued. After that all

the operations on that file can be done with a speed comparable to local file

systems. Coda actually even uses a local file system to store cache. Write

operations are sent synchronously back to server if possible, if not then they are

written to local log which will be played back when client joins cluster.

One of the envisioned usages for Coda was supporting mobile computing where

clients join and leave the cluster regularly, often for days. To this end they have

added a concept of hoarding that allows you to mark some files that you will

most often need as sticky which ensures that they will always be in cache. In

addition they have a helpful program that “spies” on your usage habits and can

mark the files that you will most probably need sticky for you.

Coda is almost suitable for our goals but still has couple of serious limitations:

● Files are always replicated in whole before open call returns [8]. While

being acceptable for small files it is unusable for large files that our

content will primarily consist of.

● We do not have much control over cache placement or any centrally

accessible information about current placements.

● It has problems with multihomed hosts that use multiple ip-addresses on

different interfaces, which is something that we need to do for network

traffic optimization purposes.

18

3.3.4 Userland approach

Compared to the kernelspace method, the userland approach is a completely

opposite method. The idea is to relax the meaning of a filesystem and implement

some of the filesystem calls like readdir(), open(), read() etc. as a userland

library that is directly linked with your applications that want to use it. This

method is of course a lot simpler to get right, but you have to modify all your

tools and client applications to understand the semantics of your library. This

means that you cannot use the normal system tools on your filestore.

3.3.5 MogileFS

MogileFS is a pure userland file system implemented by Danga Interactive for

their Livejournal project. It is basically just a set of file replication scripts written

in Perl. It has a flat namespace and can support multiple methods for actual file

replication. Metadata is stored in a MySQL database. A client that wants to use it

has to first ask from a tracker where the required file is located and then issue a

retrieve command for the file directly to the storage server.

3.3.6 GoogleFS

GoogleFS is a distributed proprietary file system implemented by Google for

internal use. Because their core business requires constantly handling huge

amounts of data and there were not any cost effective solutions available that

could scale well enough, they decided to create their own distributed file system

that would be optimized to their specific workload and scale well to a large

number of servers and clients. They also decided to run it on top of inexpensive

commodity hardware since it meant significant cost savings.

Google is running several GoogleFS clusters, the largest of them reaching

several hundred terabytes distributed over more than a thousand machines. The

main design decisions with their implications were the following [9]:

● Using normal PCs for nodes necessitates constant monitoring, error

detection, fault tolerance and automatic error recovery. In other words

19

component failures must be considered normal rather than something

exceptional.

● Most of their files are rather large, usually several gigabytes each. Because

of that they decided to use 64MB as block size which is much larger than is

usually used in file systems.

● Reads are mostly large and sequential meaning that a file is usually read

from the beginning to the end.

● Writes are mostly large streaming appends. Random writes at arbitrary

position are rare and do not have to be efficient.

● Concurrent appends are normal and must be deterministic.

● The file system and the applications running on top of it are both designed

by Google so there is no need to provide a strictly POSIX compatible

interface to the file system.

The architecture of the system consists of single master server containing all the

metadata and many chunkservers that store the actual data. Files are split into

chunks (analogous to blocks in the classical file systems).

Metadata server stores file and chunk namespaces, mappings from files to

chunks and locations of each chunks replicas. Control over the replication

decisions is left to chunkservers and indeed the master does not even keep the

information about chunk placements in any persistent form. Instead it will ask

each chunkserver for this information at the startup and whenever a chunkserver

joins the cluster. Master keeps all the information in RAM for performance

reasons. Important metadata changes are written to log file on the disk which is

replicated to other servers for backup. Periodically snapshots of the system state

are created to keep log files small. On startup the master server just reads in

latest snapshot and replays and subsequent log entries.

20

3.3.7 Hybrid implementation

As a compromise between the two you can use a special pseudo file system that

allows you to mount a userland process onto a directory in a file tree. The kernel

just reflects all the I/O syscalls for this mountpoint to the userland process that

handless it in whatever way it sees fit and returns the result to the kernel. The

kernel then just copies the result back to the original caller (Illustration 4). This

way the users of your file system see it as a normal FS and can use any programs

that can work with the normal file systems and in the meantime you get all the

flexibility and ease of the implementation of the userland file system.

One of the earliest of such file systems was portalfs in 4.4BSD [10]. A demo

function implemented on it was the ability to mount a TCP connection interface

as a file system so when you wanted to open a socket to the SMTP port of some

host you could do it just by opening the file /net/tcp/example.com/smtp and use

the filehandle as if it were a normal file.

21

Illustration 4: I/O flow in hybrid filesystem

Recently the same concept has been implemented in Linux as the FUSE [11] file

system and was later ported to several other operating systems. FUSE seems to

be rather popular with more than 50 different file systems implemented on top of

it. It also has bindings for many very high level languages like Perl, Python,

Haskell and Lisp.

Our own RPFS system is also a hybrid built on top of FUSE using the Python

bindings.

3.3.8 TDFS

TDFS [7] is a FUSE based file system written in C. Each TDFS host is running a

master and a slave daemon. The master daemon is mounted as a FUSE file

system and it connects over TCP/IP to one or more slave daemons running on the

same or other hosts. It is a stacked file system that can use any native file system

for the real file storage backend. TDFS requires you to have all files available on

all the nodes and this replication should be done by other means (with rsync for

instance). Since all the files exist on all the systems the reads will always be

served from the local copies.

While TDFS is closest FUSE based file system to our goals that we could find, it

still is built for completely different purpose which makes it unsuitable for our

purposes. Namely it is meant to be used for keeping content that is shared by

many servers in sync when all the servers have all the data. A good example of

such a workload is a farm of servers serving the same files in round-robin

configuration.

22

4 Design Requirements

Originally we thought that we might just implement a simple distributed flat

namespace file system and do all the hierarchical views, quota- and privilege

management in the HTTP- and FTP daemons. However, it became clear that

such an approach would cause a lot of code duplication and would be hard to

maintain, so we decided to push everything into the file system layer.

With the original design goals discussed in chapter 2 in mind we formulated the

following requirements for our file system:

● Hierarchical namespace, because it has to look like a normal file system

to applications.

● The filesystem must implement access control list (ACL) based privileges,

since our privilege separation needs are far more complicated than

classical Unix user/group model can handle.

● Quota management is needed so that users wouldn't be able to upload

too much through FTP or other protocols.

● Automatic load balancing, so that files that are often accessed will be

replicated to more nodes.

● We have to provide custom views to allow users to see files shared to

them by other users directly or through group memberships in their home

directories.

● High fault tolerance: node failures should be considered a rule rather

than exception since we use cheap off the shelf PC hardware.

● Some knowledge of the geographical topology of the cluster and link

costs, because our cluster will have nodes in several cities and links

between the cities are a lot slower than local ones.

● Several logical files with different owners and privileges might refer to

the same physical file to save space when the hash of the files is

23

identical. This is done to save space since it is very likely that several users

have identical large video files.

24

5 Design Decisions

Since kernel based file system projects required many years of work by teams of

several full time employees, it was rather clear that writing our FS into kernel

was not a viable option if we wanted to get the project done in any reasonable

timeframe. The pure userland approach did not seem to be desirable since we

really wanted to be able to use standard commands, system management tools

and daemons on it. This left us with the FUSE based hybrid approach.

We decided that the high level design should be based on the rules of Unix

philosophy [12]. The rules we considered most important, with short descriptions

of their applications to our system are as follows:

● Rule of Modularity: write simple parts connected by clean interfaces. We

designed to split the system up into several daemons that communicate

with each other to achieve their purposes. Each daemon process has a

simple clearcut purpose.

● Rule of Separation: separate interfaces from engines. For example

replication daemon is built up from several internal components and the

highest layers have no idea over which transport methods files will be

replicated.

● Rule of Economy: programmer time is expensive; conserve it in

preference to machine time. We decided to write our system fully in Python

which is a very high level language allowing fast development.

● Rule of Optimization: prototype before polishing. Get it working before

you optimize it. Because of the modular design we can easily rewrite parts

of our system to C if optimization needs should arise, without touching

parts that do not need optimization.

Since it was clear that writing something like that was still far from trivial, even

with the given choices and principles in place, we also made several important

technical simplifications based on our specific expected workload. Most

25

important ones are similar to those made by the Google file system:

● Files are rather large in most cases. 500MB is probably a reasonable mean

size to expect. This means that we do not have to perform very well for

small files. There is a special case where we have to serve many small files,

that is handled by the optimization discussed in 6.2.1.

● Files are almost always read from start to end sequentially. Since we

always need a full file there is no reason to use blocks as the replication

unit and we can always do replication in full files. Another reason why

blocks are often used is of course speed, since it allows you to request

subsequent blocks from different peers in parallel. In our case we did not

feel that the possible speed improvements would be worth the added

complexity.

● Writes are almost always sequential as well, hence bad write performance

at an arbitrary offset is acceptable as long as appends are fast.

● Changes (writes and deletes) are very rare compared to reads. The primary

implication of this is that we could use a single metadata server without

having the fear of it becoming bottleneck in any foreseeable future.

● None of our applications needs file locking, so there is no reason to

implement it.

● Parallel writes to the same file should never happen. So we can just reject

any writes to the file when somebody is already changing it.

● Most of the files are audio, video or executables. Since compressing these

file types will not have much of an effect we will not implement it.

For the metadata storage we selected MySQL, because we already had a

powerful MySQL cluster along with the management knowhow in place for other

purposes and using it instead of some custom metadata server allows us to easily

use some of the metadata knowledge directly in the portals that use the same

26

SQL server. Using SQL also made sense since it provides all the necessary

referential integrity and serialization guarantees.

Obviously the single metadata server is the main potential bottleneck in our

architecture but we are confident that we can push the file system to many

thousand storage servers before our metadata server will become saturated,

since we have gotten more than 50000 queries per second from our SQL cluster

in benchmarks. Even if we should eventually run into this limit it will be trivial to

add additional read-only slave servers.

Another important decision was to write the file system in userspace using FUSE

through its Python bindings. This decision is by far the most important of all,

since it probably saved us years of development time. Using such a high level

scripting language may sound really awful performance-wise, but probably it will

not be much of a problem since the file system code will mainly deal with

resolving paths to inode IDs, fetching remote files and handling privileges.

Actual I/O is mostly done directly from the backing file system to network using

sendfile(). Even in the cases where we have to send files out in the write loop the

context switch and copy overhead is probably dwarfed by network latencies.

One of the most important things was to understand that performance and

scalability are very different things, the file system might not perform very well

on one server, but if it is easy enough to add a couple of more servers to the

system it will probably be cheaper in the long run than spending time on coding

it into the kernel.

27

6 Implementation

We have a number of separate processes running on their own:

● The RPFS component that is built on top of FUSE and consists of two

stacked layers (FLAT and HIER).

● Replicationd (RPFSD) that handles the actual file replication. It also has a

separate thread called weighter that is responsible for calculating

preference ordering of the peers.

● Periodic replication checker (RPP) that periodically checks if there is

anything new in the cluster that we should replicate.

● GC - Garbage Collector that deletes files that are no longer referenced

28

Illustration 5: detailed view of the RPFS cluster

from the metadata.

● Heartb – the heartbeat deamon that periodically writes information about

the server load and other performance metrics to the metadata server.

● Checker – periodically calculates the checksum for local files and

compares them to the metdata in order to detect corruptions.

● Metadata – a central data storage where file system metainfo can be kept.

● Filestore – Storage for locally replicated files, on a native FS like UFS or

EXT3.

● Fserve – a method for serving local filestore to all our other servers in the

cluster (HTTPd, NFSd etc.).

29

6.1 Metadata layout

6.1.1 RPFS_CLASS

This table describes the storage classes which are somewhat analogous to the

mountpoints in classical file systems. When we mount RPFS to a storage server

we have to specify which storage class we want to mount.

Attribute Datatype NOT NULL Description

class_id Int + Primary key

30

Illustration 6: Metadata SQL schema

Attribute Datatype NOT NULL Description

name varchar(255) + Name of the class.

replication_type enum(full, demand) + How should files be

replicated in this class.

total_space Int Estimate of total space.

used_space Int Estimate of used space.

6.1.2 RPFS_POP

Describes Points Of Presence (POPs). It is used to group servers that are located

physically in more or less the same location. In our production system POPs are

different cities. These groupings are useful for getting an overview of the cluster

topology and are used in replication decisions, i.e. we always prefer to replicate

a file from the server that is located in the same POP as we are if possible.

Attribute Datatype NOT NULL Description

pop_id Int + Primary key

name Varchar(255) + Name

descr Varchar(255) Optional description

6.1.3 RPFS_TRANSPORTS

Describes the different replication transport methods (HTTP, NFS, FTP, etc.).

Attribute Datatype NOT

NULL

Description

transport_id Int + Primary key

name Varchar(255) + Name

preference_order tinyint Used to specify the default

transport method preference

ordering. For example it can be

31

Attribute Datatype NOT

NULL

Description

used to tell that HTTP should be

always preferred to FTP if

possible.

6.1.4 RPFS_SERVER

Describes a single physical server.

Attribute Datatype NOT

NULL

Description

server_id Int + Primary key

pop_id Int Foreign key

name Varchar(255) + Name of the server

space Int How much total disk space is

available on the RPFS filestore

mountpoint (bytes).

used Int How much space is currently

used by the filestore (bytes).

addr Varchar(255) + IP address of the server. IPv4 or

IPv6.

6.1.5 RPFS_TRANSPORT_TO_SERVER

One to many mapping table between rpfs_transports and rpfs_server tables.

Attribute Datatype NOT

NULL

Description

server_id Int + Foreign key

transport_id Int + Foreign key

32

Attribute Datatype NOT

NULL

Description

preference_order Tinyint Can be used to override default

transport preference order for

this specific server.

6.1.6 RPFS_FILE

Describes the actual physical files that are stored in the native FS.

Attribute Datatype NOT

NULL

Description

file_id Int + Primary key

hash Varchar(255) Hash of the file. Currently we

use SHA256

ctime Datetime + File creation timestamp.

size Int + Filesize in bytes.

storageclass Int + Foreign key

6.1.7 RPFS_FILE_TO_SERVER

One to many mapping table from rpfs_file to rpfs_server.

Attribute Datatype NOT

NULL

Description

file_id Int + Foreign key

server_id Int + Foreign key

rp_started Datetime When this file is currently being

replicated to this server this

field contains the replication

start timestamp. When file is

completely replicated it's set to

33

Attribute Datatype NOT

NULL

Description

NULL.

6.1.8 RPFS_INODE

Provides a hierarchical namespace on top of the flat “block layer” (rpfs_file).

Attribute Datatype NOT

NULL

Description

inode_id Int + Primary key

file_id Int Foreign key

itype Enum('F','D','M') + Inode type.

name Varchar(255) + Object name.

parent_id Int Foreign key (parent inode)

mtime Int Last modification timestamp.

atime Int Last access timestamp.

ctime Int Object creation timestamp.

Mtime, atime and ctime are stored as Unix timestamps.

6.1.9 RPFS_ACL

Describes the access control lists for inode objects.

Attribute Datatype NOT

NULL

Description

acl_id Int + Primary key

inode_id Int + Foreign key

Privtype Enum('R','W') + Type of privilege.

34

Attribute Datatype NOT

NULL

Description

user_id Int

group_id Int

6.1.10 RPFS_MSGBUS

Used as a journal of changes that servers use to keep their RPFS cache states in

sync.

Attribute Datatype NOT

NULL

Description

id Int + Primary key

msgtype Char + What was done with the

object. Currently the

allowed values are D

(Deleted) and C (Changed).

evt_ts Timestamp Event timestamp.

mobj Int Inode ID

6.2 File system

RPFS really consists of two separate file system layers stacked on top of each

other. HIER is the top layer that provides a hierarchical namespace and does

privilege and quota management. FLAT is the lower RPFS layer that only has a

flat namespace without any privilege checks. FLAT is in turn backed by a native

file system like ext3, ReiserFS or UFS2.

6.2.1 Flat

Provides the basic flat view of the cluster. It is basically a single folder

35

containing all the files that exist in the cluster. Filenames are inode_id attributes

from the rpfs_inode table. FLAT also handles the communication with

replicationd if necessary so that HIER does not really have any knowledge of

replication issues whatsoever.

The flat view might be useful by itself for optimization purposes if an application

knows exactly what inode it wants and the content does not need privilege

checking. In that case we can skip the path resolution completely by servicing

objects directly from RPFS storage mounted with flat view. The main examples of

this kind of workload are public galleries and multimedia sharing sites. For these

applications we also generate links to specific backend servers that are known to

have the file instead of using a generic cluster address. This way the servers

never have to send out replication requests which cuts down access time

considerably which is important when we are serving many small files (for

example thumbnails of photos) instead of few large ones which was our intended

primary workload.

This flat view optimization possibility is actually of course just a nice side effect

of using SQL for metadata storage as opposed to the inode tree used in normal

file systems.

6.2.2 Hier

Hier is a layer built on top of the flat namespace, and provides a hierarchical

structure that users are familiar with. In addition, Hier does all the privilege and

quota checking. We cannot use the normal Unix uid/gid model for our security

needs since the users really just do not exist in system, so we have to get

privileges from the path and rely on the servicing applications chrooting the

users correctly.

Similarly to classical Unix file systems our internal Hier layer structure is built

around the inode abstraction that represents any object in the filesystem.

Internally the inode object is backed in metadata storage by rpfs_inode table. In

current implementation we have 3 types of inodes: files, directories and

36

metanodes.

Files

Each file object is backed by one entry in the rpfs_inode table that has its itype

attribute set to F. Each file references a single actual raw file object in the

rpfs_file table. Multiple inodes might reference the same raw file which is an

optimization for the case when many users have the same files. When write is

done through one of the multiple inodes referencing the same raw file the system

will just perform copy on write (COW) transparently and create a new raw file ID

for this inode.

Directories

Directory is an inode that has its itype attribute set to D. Directories can contain

files, metanodes or other directories.

Metanodes

In order to be able to allow FTP we had to create a home directory for each user

where he could be chrooted on login. In addition to the users private files,

galleries and other such resources it also has to contain all the resources that

are shared with the user either directly from another user or indirectly through a

group mechanism like an intranet. While it might sound deceptively simple, it

has proven to be the most complicated part of our system. We saw only three

possible implementation possibilities:

● Use of symbolic links (symlinks) to reference various shared directories

from the users home directory. It would have been the simplest to

implement but keeping track of hundreds of thousands of symlinks all over

the system would have been really hard to manage in the long run. Also

since symlinks cannot be followed outside chroots it would have been

infeasible security wise too.

● Mount shared directories to users home directories via so called loopback

37

or null mounts which allow you to mount one point of directory tree into

another. While this will work fine inside chrooted environment it still is

hard to manage and keep tract of. Also we feared that OS probably cannot

handle hundreds of thousands mountpoints in a single system gracefully.

● The solution that we chose was to create special inode types in our RPFS

that are similar to directories but know how to find out what shared

directories they are allowed to show in themselves.

These special directories are called metanodes and are HIER objects that are

implemented by subclassing MetaNode object which in turn subclasses Inode

object. In general metanode can get the content that it returns from any source,

not just the rpfs_inode table like normal directories.

For example we have a UsersMetanode in our FS that selects all the users from

our users table so when you ask for a directory listing you will see a directory

with name of each user that exists in the SQL. Each of the entries in the

UsersMetanode is again a metanode called UserMetanode which represents

home directory of a single user and contains hardcoded list of other metanodes

like IntranetsMetanode which contains a single IntranetMetanode for each

intranet user belongs to (Illustration 7).

While there are no restrictions on where the directory list returned by metanode

comes from, there still are some restrictions on what objects the metanodes can

contain and what operations are allowed on them. These limitations are mainly

caused by the fact that metanodes jump out of our normal directory hierarchy

and do not have real inode_id's so we cannot reference them from the parent

field of the rpfs_inode table. Currently the limits are as follows:

● You cannot create or delete a metanode from the file system with usual

operations. They can only be operated with by special file system

management tools.

● Metanodes can only contain directories or other metanodes.

38

6.2.3 Caches and cache coherency

One of the most common operations in almost any file system is name lookup

which is the process of resolving a path to an inode ID. Without any caching we

would have to ask the metaserver for the inode ID of every path element. This

would quickly overload the server and would be rather slow because of the

communication delays. In order to offset the name resolving costs most file

systems have a namecache that directly caches path-to-inode mappings for

recently requested paths in a hash table or some other data structure that allows

fast lookups. The RPFS processes implement a namecache by keeping the inode

object tree in RAM. When the tree grows over the configured size, a garbage

collector will traverse it and delete the least recently used nodes.

The main problem with caching metadata - especially in a distributed

environment - is that we have to be notified of changes if we want to be sure that

we are not serving old content to users or even worse - serving content to users

that no longer have privileges to access it. Our cluster does this through the

rpfs_msgbus table which resembles a journal in the normal file systems. When

39

Illustration 7: Partial filetree. [M] marks metanode, [D] is
a directory and [F] is a file

there is a change in inode information, a new record specifying the affected

inode ID and the operation type is also added to this table. The garbage collector

thread in each RPFS process constantly polls this table to see if there are any

new entries with their ID greater than the last one seen. If so then it remembers

the new last record ID and purges all the affected inodes from the cache. The

metaserver's cronjob deletes entries from the msgbus table that are older than

24 hours, daily. Obviously we still have a small inconsistency window between

the change event and the moment when the inode is actually removed from the

caches but usually it should be around ten seconds which we consider

acceptable.

We also implemented a hash based cache that contains the direct pathname to

inode object mappings but had to disable it because of the complexity involved in

finding out which entries should be purged. This difficulty arose from the fact

that there can be multiple paths leading to the same inode.

6.2.4 Locking

In order to ensure consistency of our directory tree and file contents we have to

protect some operations with locks. Currently we have a locked_by fields for this

purpose in the rpfs_inode and rpfs_file tables which are a foreign keys referring

rpfs_server.id entry of the lock holder.

When a write operation is attempted on a file handler for the first time or a new

file is created we will lock corresponding rpfs_file and rpfs_inode entries to

ensure the file is not changed on other servers at the same time. When close() is

called for this filehandle RPFS updates the timestamp, checksum and size fields

and releases the locks. The locks are semantically considered write locks so

servers can still serve read() requests for locked files and even do replication.

Any write requests for the locked files from other hosts will block.

Locking is also needed when multiple files entries are collapsed into one by

integrity checker as discussed in section 6.7. In that case we will first lock both

rpfs_file entries and then all the inodes that reference them. Then rpfs_inode

40

entry is changed to reference the rpfs_file entry that will remain after the

collapse and locks will be released in the reverse order.

When write() is called for a file that is referenced by multiple inodes we will first

copy the entire file on the backing store, create a new locked rpfs_file entry for it

and change our rpfs_inode entry to reference it instead of the new one.

6.2.5 Object removal

When a program issues the unlink() syscall for a unlocked file object we will just

delete the corresponding entry from the rpfs_inode table. Actual deletion of the

file and rpfs_file entry is left to the garbage collector process discussed in 6.4. If

the inode is locked we will return EIO error to the caller.

When a directory object is removed with the rmdir() syscall we can just execute a

simple SQL delete statement without worrying about locking since SQLs

referential integrity will ensure the necessary consistency.

6.3 Replication Daemon

All the real replication work is done by a separate daemon called RPFSD. The

client processes that want some file to be locally replicated request it from

RPFSd over a local Unix domain socket with a simple HTTP like protocol. RPFSd

is solely responsible for deciding where to get the file from and possibly

selecting the actual transport method for getting it if multiple possibilities are

present.

RPFSD is designed to be transport agnostic - with each server we store a list of

supported transport methods in the order of preference. Transport methods

might vary from a pure userland protocol like FTP to network filesystem mounts

like NFS. Currently the supported transport methods are HTTP and NFS.

Clients can request file replications over a special protocol called RPCOM that

closely resembles HTTP. Using this protocol clients will ask RPFSD to replicate

files and are notified of the state changes in replication. Responses are either

41

final or transitional. A final response means that RPFSD has finished servicing

the replication of the given file and no further notifications about it will be sent

unless the client asks for the replication again. Transitional message signals

important change in replication state, for example when replication has been

started we return a transitional message to the client so that the client may start

writing out the file to its callers.

Example of the data flow in the RPFS cluster when a non-local file called foo.avi

with inode_id 97 is requested is shown in the Illustration 8.

Currently there are two clients on each datanode that communicate with RPFSD:

the RPFS file system itself and the periodic replication checker (RPP).

One slightly complicated issue we faced with RPFSD design was the question

how to block RPFS reads on I/O when our replication is in progress and a client

is reading faster than RPFSD can replicate. As discussed previously Coda solves

42

Illustration 8: Data flow in RPFS when non-local
file is requested

this problem by blocking open calls until file is completely replicated. Because

our primary workload consists of huge files such a solution is unacceptable.

Basically we saw three feasible solutions:

● Ignore the issue and hope such situations occur rarely enough. The client

will just get a partial file in this case.

● Add a special ioctl to the kernel that can be set on files to signal that the

file is currently under replication and readers should block when the end is

reached instead of returning EOF.

● Force RPFS to send out files that are under replication in the write loop,

instead of using sendfile.

Kernel implementation would have been obviously fast but also far more

complicated and it would have required maintaining our patches against the new

versions of the kernel. It would also have required extra work if we wanted to

use other operating systems besides Linux. So with the Rule of Economy in mind

we decided to use a slower but easier to implement method of adding a

replication state aware I/O loop to RPFS.

6.3.1 Structure

The logical design of the RPFSD consists of:

● A comlink interface that handles RPCOM communication with clients.

● A backend replication worker thread spool that handles the actual file

replication work.

● Two queues that act as a communication layer between the two.

● A weighter thread that calculates link costs to peers.

We decided to split the communication interface and workers up so that the code

logic would be cleaner. Having multiple worker threads might be good for

scalability on multicore systems that are already widely used too.

43

The comlink interface parses the requests from the client and puts them into the

central request dictionary and workq. The free worker threads take requests

from the workq and do the real replication: they use request_queue to

communicate back the changes in replication state. The comlink is responsible

for taking the requests from the queues and communicating the state changes

back to all the interested clients. When the comlink communicates back a state

change that is final it also removes the request from the request dictionary.

6.3.2 RPCOM protocol

Clients ask the replicationd to replicate the file with “GET file_id“ command.

RPFS responds with a status code followed by the file_id and possibly

explanation of the status. Code semantics are similar to the ones HTTP protocol

uses i.e. 200 means success, 3XX are various temporary errors, 4XX are

permanent errors and 5XX are various unexpected conditions.

 Each message ends with the decimal value 13 (Unix newline). The format of line

is

code file_id [message] where

● code - integer in the range 200-599

● file_id - 64bit integer > 0

● message - optional additional information

Currently the following codes are defined

Code meaning Final?

200 replication of file finished yes

201 replication of file started (file should be visible on backing

storage)

no

202 replication of file is accepted and queued no

304 temporary replication error for example when daemon

cannot connect to any peers that have the copy

yes

44

Code meaning Final?

404 permanent replication error - metadata storage does not

know anything about such a file

yes

405 permanent replication error - file metadata exists but nobody

really has it

yes

500 something unexpected occurred during replication yes

6.4 Garbage Collector

RPFS does not send out file deletion commands to data nodes when the file is

removed from the metadata server. Instead we implement a lazy deletion where

file or directory removal only deletes the corresponding entry from the

rpfs_inode table so the file will not be reachable through HIER anymore.

Each data server runs a garbage collector process (GC) that periodically checks

if:

● there are raw files that are replicated on our server according to the

metadata and are not referenced by any inodes anymore, in which case we

can delete that file from the file_to_server mapping table and remove it

from the local filestore. If it is the last replication entry for a given file it

will also remove the raw file record from the metadata (rpfs_file table).

● There are files on our node that are over replicated and the last access

time is older than the configured value.

GC can also delete files that are still referenced if the server is running low on

space and the replication constraints of the given file allow it. Usually GC runs in

user configured intervals but users can ask it to do a sweep right away by

sending the USR1 signal.

6.5 Performance measuring daemon

One of the daemons called Heartbeat periodically writes some performance

45

metrics about the system into the central metadata storage. Currently we store

the mean system load values for the last 1,5 and 15 minutes and the iowait

value.The weighter threads of all the servers use those values in link cost

calculations in order to prefer less loaded servers.

6.6 Weighter

The purpose of the weighter thread is to periodically calculate link costs to our

peers to ensure that we use the most optimal replication paths. It runs as a

separate thread inside the replication daemon.

The cost for each host is determined by the following equation:

linkCost= sysload5∗ioload
cpusInTheSystem

networkSpeed

Where ioload and sysload5 are the corresponding values from the rpfs_server

table for that peer and networkSpeed is the time it took to fetch a single static

512kB test file, which is measured by the weighter thread itself. When a file is

available from multiple hosts we always prefer the one with the lowest link cost.

6.7 Integrity Checker

In order to detect corruptions caused by hardware problems as early as possible

we run a daemon that does regular sweeps over all the locally stored files,

calculates their checksums and compares them against checksums from central

metadata storage. If mismatch is found then alert is logged and offending file is

deleted.

Integrity checker is also responsible for collapsing multiple rpfs_file entries that

have the same checksum into single entry. This is done simply by updating

corresponding rpfs_inode records to reference the rpfs_file entry with the

highest replication count.

46

6.8 Filesystem tester

Tester is a distributed file system testing script. It is not of course strictly part of

the file system, but we consider it essential to have a simple command at hand

for testing most of file systems capabilities. This way we can catch bugs caused

by new changes right away which simplifies the development process

considerably.

It consists of two process groups called readers and writers. Both groups contain

a predefined number of child processes, usually ten. Writers sleep for random

time intervals and create random directories and files in the file system. They

sometimes also delete and modify existing files. Reader processes traverse the

file system randomly and sometimes try to read random files.

In general this testing script creates far greater load on the cluster than we ever

expect to see in a production system and has helped us to uncover various bugs,

locking issues and corner cases both in our own code and the OS.

47

7 Technical Architecture

7.1 Hardware

Our actual system has currently five RPFS nodes located in three cities and each

city is a different POP. Servers are built from cheap desktop components with

the following specs:

● AMD X2 3200 (dualcore 2,3Ghz 64bit CPU)

● 4G RAM DDRAM (400Mhz)

● four 500GB SATA disks

● two 1Gbit/s network interface integrated on the motherboard

Disks are currently in software RAID5 configuration so we have around 1,5TB of

storage available on each node. This allows us to survive loss of at least 1 disk in

each of the nodes without data losses. Of course we could have done without the

RAID because the RPFS should be able to survive the loss of a single node, but

we decided to play it safe while the system is still young and bugs might exist in

failover scenarios.

Metadata is stored on the SQL cluster that has two servers with the following

hardware:

● four 2.4Ghz 64bit AMD Opteron CPUs

● 12G RAM (400Mhz)

● Storage is attached over storage area network (Fibre Channel) from EMC

CLARiiON CX300

7.2 Software

Storage servers are running following software:

48

● Debian Etch Linux with 2.6.20 kernel

● FUSE 2.6.5

● Python 2.4

● PyDog application server (ver. 0.3). This is a proprietary server

implemented by Elion Enterprises Ltd. and used by our hot.ee portal.

It's used on storage nodes for serving content over HTTP.

● Vsftpd 2.0.5. Used for serving content over FTP.

● PAM MySQL authentication module used by vsftpd

● lighttpd

ReiserFS is used as a backing filesystem.

Metadata cluster is running:

● Suse Enterprise 9

● MySQL 4.1.14 with InnoDB tables.

The metadata cluster is not really specific to RPFS and runs several other

databases as well.

7.3 Structure

Each RPFS data server serves content to clients over FTP and HTTP protocols

using vsftpd and PyDog servers respectively. Users manage their file privileges

and quotas from our hot.ee portal which actually uses the same SQL database as

RPFS metadata storage so the management is done directly using SQL queries

without any intermediate interface in between. One of the network interfaces on

each RPFS data node has a public IP address and the other one is in private

VLAN. All the metadata and replication work is done over the private network.

We use HTTP as our current replication transport so we also have lighttpd

webserver running on all the private interfaces for that purpose.

One of the more interesting optimizations is that each datanode has two public

49

IP addresses, one of which is the same for all the nodes and when client tries to

open connection to it he is routed to one of the nodes in the closest POP. Because

of this clients in several cities can open connections to the same IP address but

still get connected to the closest server. The unique IP address is used in cases

where we actually want to get the specific node – for example hot portal might

serve gallery application and generate links to thumbnails as URLs to several

specific backend servers to distribute load between them.

50

Illustration 9: Deployment of the RPFS cluster in the hot.ee
environment

8 Summary

The purpose of this thesis is to propose a design and implementation of a

distributed file system that could be used as a storage platform for various

current and future services at Elion Enterprises Ltd.

In this work we have discussed the goals set for this project and the reasoning

behind them, which made up the first part. The second part of the thesis

explained some of the core concepts and terms. After that we discussed various

existing distributed systems in relation to our goals.

The central part of the thesis, which is at the same time its main result,

describes the design and implementation of our own file system called RPFS.

Essentially our file system is a stacked one, running on top of the FUSE layer

that allows us to provide a normal file system interface to programs while

running in userland. We have made and discussed several important design

simplifications which allowed us to implement the system in a reasonable

timeframe. Currently the implementation is in the early testing phase.

The author has learned a lot about the issues that arise in distributed file

systems and how they are solved in several current implementations. The field of

distributed file systems has proved to be a interesting one and this thesis has

only managed to scratch the surface.

51

9 References
1. Silberschatz, Abraham; Galvin, Peter; Gagne, Greg Applied Operating System

Concepts John Wiley & Sons,2000 0471365084

2. Love, Robert Linux Kernel Development, Second Edition Pearson

Education,2005 0672327201

3. Silberschatz, Abraham; Galvin, Peter; Gagne, Greg Windows XP supplement

chapter 2002

4. Files 11 http://en.wikipedia.org/wiki/Files-11 28.05.2007

5. McKusick, Marshall Kirk The design and implementation of the FreeBSD

operating system Pearson Education Inc.,2004

6. Braam, Peter J; Nelson, Philip A.; Removing bottlenecks in distributed

filesystems: Coda & Intermezzo as examples. Proceedings of the 5th Annual

Linux Expo, pages 131-139,1999

7. Voras, Ivan; Žagar, Mario Network Distributed File System in User Space

2006

8. Whole file caching in Coda http://www.coda.cs.cmu.edu/misc/wholefile.html

28.05.2007

9. Sanjay Ghemawat, Howard Gobioff, Shun-Tak Leung The Google File System

2003

10.McKusick, Marshall Kirk The design and implementation of the 4.4 BSD

operating system ,1996 0201549794

11.Homepage of the FUSE project http://fuse.sourceforge.net 28.05.2007

12.Raymond, Eric S. The Art of UNIX Programming; 1st ed. Addison-Wesley

Professional,2004 978-0131429017

52

10 Resümee
Tänapäevased meediarohked veebirakendused nõuavad aina suuremate

andmemahtude talletamist ja serveerimist, kusjuures kriitilised on ka nõuded

veatolerantsusele ja skaleeruvuse potentsiaalile. Sarnase vajadusega seisis

silmitsi ka Elion ja selleks otstarbeks otsustati luua oma hajus failisüsteem.

Antud töö kirjeldaski Elioni ootusi taolisele süsteemile, disaini, selle taga olnud

põhjusi ja tehnilise rakenduse arhitektuuri. Muuhulgas analüüsiti ka mitmeid

mujal maailmas samalaadsete probleemile lahendamiseks loodud hajussüsteeme,

millest me oleme oma arhitektuuris ka paljuski eeskuju võtnud. Väljapakutud

failisüsteemi disain ongi selle diplomitöö põhitulemuseks. Kirjutamise hetkel on

kirjeldatud failisüsteem juba ka realiseeritud ja on parajasti varajases testi

faasis.

Autor õppis töö käigus palju uut erinevate hajusfailisüsteemide loomisel

tekkivate probleemide ja nende tüüpiliste lahenduviiside kohta. Selgeks sai ka, et

tegu on veel arengus oleva alaga, kus on palju lahendamata probleeme ja seega

ka huvitavaid väljakutseid edaspidiseks teadustööks.

53

	1Introduction
	2Goals
	3Distributed File Systems
	3.1What is a file system?
	3.2What is a distributed file system?
	3.3Case studies
	3.3.1Kernel based implementations
	3.3.2NFS
	3.3.3Coda
	3.3.4Userland approach
	3.3.5MogileFS
	3.3.6GoogleFS
	3.3.7Hybrid implementation
	3.3.8TDFS

	4Design Requirements
	5Design Decisions
	6Implementation
	6.1Metadata layout
	6.1.1RPFS_CLASS
	6.1.2RPFS_POP
	6.1.3RPFS_TRANSPORTS
	6.1.4RPFS_SERVER
	6.1.5RPFS_TRANSPORT_TO_SERVER
	6.1.6RPFS_FILE
	6.1.7RPFS_FILE_TO_SERVER
	6.1.8RPFS_INODE
	6.1.9RPFS_ACL
	6.1.10RPFS_MSGBUS

	6.2File system
	6.2.1Flat
	6.2.2Hier
	Files
	Directories
	Metanodes

	6.2.3Caches and cache coherency
	6.2.4Locking
	6.2.5Object removal

	6.3Replication Daemon
	6.3.1Structure
	6.3.2RPCOM protocol

	6.4Garbage Collector
	6.5Performance measuring daemon
	6.6Weighter
	6.7Integrity Checker
	6.8Filesystem tester

	7Technical Architecture
	7.1Hardware
	7.2Software
	7.3Structure

	8Summary
	9References
	10Resümee

